30 November, 2015

Useful Facts About Diffusion Coatings

By Marci Nielsen


The operation and application of metal components is done in diverse environments. The variance in the environments is of great importance because some of the environments have diverse impacts on components. Corrosive environments and high temperatures for instance can be very damaging. Adverse environments impact functionality, longevity, and beauty of components. As such, in an attempt to reduce or eliminate the effects, diffusion coatings were invented. The purpose of these coatings is protecting substrates from being ruined by adverse environments. The information below discusses the process and how it offers protection to substrates.

The process of applying a diffusion coating on a metal substrate is called diffusion coating too. This process is done inside a chamber at temperatures that are very high. Various metals such as nickel, iron, and cobalt are activated thermally during the procedure. Before the process can start, the substrate needs to be cleaned thoroughly first. Cleaning can be done through various methods, but abrasive blasting is commonly used. Cleaning is for removing dirt and other undesirable materials from the surface of substrates.

Once the substrate has been cleaned properly, it is placed into a contained together with the metal used for coating. The container is then placed inside a furnace or a chamber. The furnace is turned on and the temperature set to the range of 380-425 degrees centigrade.

When certain temperatures are attained within the aforementioned range, diffusion occurs to the metal. This makes it to make an alloy with the substrate. The nature of the substrate and the kind of metal used dictate how much time this process can last. However, most processes last from two hours to four hours. The substrate must be continuously turned throughout the process to achieve equal thickness.

The smoothness of the resultant coating is high while the thickness if uniform. Thicknesses can be varied to suit different functions. However, 15-80 micrometers is the normal range of thickness. The coating resembles the metal used in color. Iron, cobalt, chromium, aluminum, and silicon are some among the commonest metals in use. Various metals such as iron, steels, cobalt, and nickel can be coated.

The resultant coating provides significant resistance against oxidation, erosion, oxidation, and reaction with various substances such as water and air among others. This process has made metal components meant for critical functions more reliable, stronger, and more durable. Some of the metal components that are passed through this process include gate valves, power generation components, pump impellers, and gas turbines engine components such as cases, blades, and vanes.

This process is highly employed in industrial settings than it is applied in residential settings. In fact, very few equipment in homes need or have components coated this way. The process has been in use for long now, and since its invention, it has been modified severally. Modification are aimed at making it perfect in terms of the methods and technologies used.

Modern day furnaces are very efficient and have improved functionality because they incorporate several features. The coatings achieved today are thin yet very durable, strong, and efficient at avoiding corrosion. This technology is highly employed in the automotive industry.




About the Author:



No comments:

Post a Comment

Why You Need A Boise Addiction Doctor

By John Stevens Substance abuse is wrecking the lives of many people both youths and adults and even kids. It is important that you get pr...